

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MEI STRUCTURED MATHEMATICS

2601

Pure Mathematics 1

Wednesday

12 JANUARY 2005 Afternoon

1 hour 20 minutes

Additional materials: Answer booklet Graph paper MEI Examination Formulae and Tables (MF12)

TIME 1 hour 20 minutes

INSTRUCTIONS TO CANDIDATES

- Write your Name, Centre Number and Candidate Number in the spaces provided on the answer booklet.
- Answer all questions.
- You are permitted to use only a scientific calculator in this paper.

INFORMATION FOR CANDIDATES

- The allocation of marks is given in brackets [] at the end of each question or part question.
- You are advised that an answer may receive no marks unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 60.

2

Section A (30 marks)

- 1 State the exact value of tan 30°. Write 30° in radians as simply as possible in the form $k\pi$. [3]
- 2 Solve the equation |2x 5| = 13. [3]
- 3 Sketch the graph of $y = \sin x$ for $0^\circ \le x \le 360^\circ$.

Solve the equation
$$\sin x = -0.3$$
 for $0^{\circ} \le x \le 360^{\circ}$. [4]

- 4 Obtain the binomial expansion of $(1 5x)^4$, simplifying the coefficients. [4]
- 5 Find the x-coordinates of the points on the curve $y = x^3 4x^2 + 2$ where the gradient is 3. [4]
- 6 The equation $5x^2 + 3x + c = 0$ has a repeated root. Find the value of c and the value of the repeated root. [4]
- 7 A circle of radius 7 cm has a sector of angle 1.6 radians. Calculate the arc length of the sector.

The arc length is measured with a flexible ruler as 10.2 cm. Calculate the relative error in this measurement. Give your answer to 2 significant figures. [4]

8 Given that y = 5x, find $\int_{0}^{3} \pi x^{2} dy$. State clearly what this integral represents. [4]

3

Section B (30 marks)

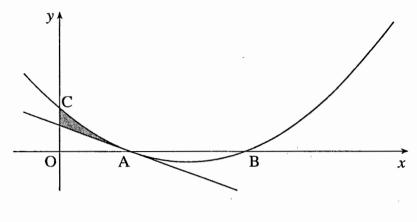


Fig. 9

The curve $y = x^2 - 7x + 10$ cuts the x-axis at A and B and the y-axis at C as shown in Fig. 9.

(i) Write down the coordinates of C.

Show that A is (2,0) and find the coordinates of B.

Hence or otherwise find the coordinates of the turning point of the curve. [5]

- (ii) Solve the inequality $x^2 7x + 10 > 0$. [2]
- (iii) Show that the equation of the tangent to the curve at A is y = -3x + 6. [3]
- (iv) Calculate the area of the region bounded by the portion AC of the curve, the tangent at A and the y-axis. This region is shown shaded in Fig. 9.
- 10 A circle with centre (2, 4) has equation $x^2 + y^2 4x 8y = 25$.
 - (i) Show that the radius of the circle is $\sqrt{45}$. [3]

[2]

- (ii) Prove that the point (8, 8) is outside the circle.
- (iii) Find the equation of the line which is perpendicular to the line y + 2x = 8 and which passes through the centre of the circle. [3]
- (iv) P and Q are the points where the line y + 2x = 8 crosses the circle. Show that PQ is a diameter of the circle and find the coordinates of P and Q. [7]

Mark Scheme

	Section A			
1	$1/\sqrt{3}$ or $\sqrt{3}/3$ isw	1	accept exact equivs	
	$\frac{1}{6}\pi$ or 0.16π or $\pi/6$	2	M1 for $180^\circ = \pi$ radians soi	
	6 01 0110 01 0		eg × $\pi/180$ or for 0.17 π etc	3
2.	9	1		
	-4	2	M1 for $2x - 5 = -13$ o.e.	
			B2 for 9 and –4 with inequality or	3
			modulus	
3.	sketch of correct shape and period	G1	allow one period drawn as implying	
	4 1 4 1 4 1 4	C1	0 to 360	
	1 and –1 indicated on <i>y</i> -axis	G1	dep on attempt at sin or cos graph of	
	342.54239 or 197.4576 rot to 3 or	1+1	correct amplitude 1 for both correct + extras in range;	
	more sf	1+1	ignore extras outside range	
			SCB1 for 359.6(9) and 180.3()	
			[rad mode]	
			SCB1 for 340.6() <u>and</u> 199.3(9)	
			[grad mode]	4
4.	$1 - 20x + 150x^2 - 500x^3 + 625x^4$	4	B3 if signs incorrect or one error in	
			digits, B2 for both of these errors or	
			two errors in digits, B1 for 1 4 6 4 1	
			soi or SCB1 for $(1 - 10x + 25x^2)^2$	4
5.	$3x^2 - 8x$	M1	condone one error	
5.	3x - 6x their $y' = 3$	M1 M1		
	(3x+1)(x-3)	M1	attempt at factorising or quadratic	
	(3x+1)(x-3)		formula after their $y' - 3 = 0$	
	x = 3 or -1/3	A1	or B4; allow -0.33 or better	4
6.	9/20 o.e.	2	M1 for $3^2 - 4 \times 5 \times c = 0$ or $9/20$	
			found with inequality	
			or for $5(-0.3)^2 + 3(-0.3) + c = 0$	
	-0.3 o.e	2		
		2	M1 for subst. in formula with zero	
			discriminant or for use of $y' = 0$	4
			<u>or</u> M2 for $5[(x + 0.3)^2 - 0.3^2] + c = 0$	-
7	11.2	2	o.e.; M1 for $(x + 0.3)^2$ o.e.	
7.	11.2	2	M1 for 7×1.6	
	[–]0.089 or 8.9%	2	M1 for (their $11.2 - 10.2$)÷ their 11.2	
			or other versions of 0.0892;	4
8.	integral of $\pi y^2/25$ or $\pi (y/5)^2$	M1		
	$\pi y^{3}/75$	M1	iif first M not gained, allow ft for	
			omission of π or 5 not squared	
	$27\pi/75, 9\pi/25, 0.36\pi \text{ or } 1.13(0)$	A1		
	volume [of revolution] about y-axis	E1	allow sketch of cone in correct	
			orientation	4

MEI Mathematics 2601 P1 Mark scheme January 2005

		Section B			
9	(i)	(0, 10)	1	condone 10	
	(1)	(x-2)(x-5)	M1	attempt to factorise or use	
				quadratic formula	
		2 or 5	A1	allow as implying A and B coords	
				or B1 for verifying A, B1 for (5,0)	
		(7/2, -9/4)	1+1	or ft for <i>x</i> coord from their B coord	5
	(ii)	x > 5 ft and $x < 2$	1+1	B1 for $x \ge 5$ ft and $x \le 2$	2
	()				
	(iii)	y' = 2x - 7	M1	allow seen in (i); or	
		x = 2 subst in their y' [=-3]	M1	M1 for $x^2 - 7x + 10 = -3x + 6$	
		y = -3(x - 2)	M1	M1 for $(x - 2)^2 = 0;$	
		or (2, 0) subst in $y = -3x + c$		M1 for double root implies tangent	3
		NB ans $y = -3x + 6$ given			
	(iv)	-	M2	\mathbf{M}_{1} for $\int (2 - 7 + 10) [1 - 1 - 1]$	
	(\mathbf{IV})	$\int ((x^2 - 7x + 10) - (-3x + 6)) [dx]$	1012	M1 for $\int_{x}^{x} (x^2 - 7x + 10) [dx]$ and	
				M1 for $\int (-3x+6) [dx]$ or for	
		$x^{3}/3 - 2x^{2} + 4x$ or	A 1	$\frac{1}{2} \times 2 \times 6$	
		$(x^{3}/3 - 7x^{2}/2 + 10x) - (-3x^{2}/2 + 6x)$	A1	o.e., for integration of quadratic at	
		value at 2 [– value at 0]	M1	least, condone one error	
		8/3 o.e.	A1	ft for their integral	
			AI	accept 2.66 or better; condone neg	5
10	(•)		2.41	sign	5
10	(i)	$(x-2)^2 + (y-4)^2 = r^2$	M1	or for starting with given eqn: $1/2$ for $(-2)^2$ to $(-2)^2$	
		correct expansion of LHS	M1	M2 for $(x-2)^2 - 4 + (y-4)^2 - 16 = 25$	
		subst of 25 for $x^2 + y^2 - 4x - 8y$	A1	A1 for $(x-2)^2 + (y-4)^2 = 25 + 16$	
		or subtraction of given eqn from		+ 4 or $r^2 = 45$ SC1 for $r^2 = 16 + 4 + 25$	
		their correct equation			
				[can earn 3 if f , g , c formula quoted and result justified]	3
	(ii)	$(8-2)^2 + (8-4)^2$ or 52	M1	or square root of this; or M1 for	5
	(11)	(8-2) + (8-4) of 32 > r^2 so outside	A1	sketch, A1 for accurate drawing;	
			711	or M1 for showing $y = 1$ or 7 on	
				circle, A1 for 8 not in $[1, 7]$	
				M1subst (8, 8) into given eqn and	
				LHS=32, A1 > 25 so outside	2
	(iii)	$grad = \frac{1}{2}$	2	M1 for grad = $-1/\text{grad}$ PQ	
	()	(y-4) = their m (x-2) o.e.	1	B3 for $y = \frac{1}{2}x + 3$ o.e.	3
	(iv)	showing (2, 4) is on $y + 2x = 8$	1	or finding (5, 2) and (-1, 10) and	
				showing dist between them = $2\sqrt{45}$	
			M1		
		y = 8 - 2x	M1 M1	or $x = (8 - y) / 2$	
		subst of their y or x from line in	1111		
		eqn for circle	M1	and and and fourth and	
		attempt to rearrange to zero $5x^2 - 20x - 25 = 0$ or simpler	A1	condone one further error $25 = 0.54$	
		5x - 20x - 25 = 0 or simpler x = 5 or -1	A1 A1	or $5y^2/4 - 10y - 25 = 0$ etc	
			A1 A1	or A1 for each of $(5, -2)$ and $(-1, -1)$	7
		y = -2 or 10		10), to advantage of cand.	'

Examiner's Report